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In the ordinary method of variation of parameters, a solution of a given linear 
differential equation is assumed to be a linear combination of independent solutions of an 
auxiliary solvable equation, and the coefficients in that linear combination are functions 
to be determined. A new version presented in this paper uses a linear combination 
including also the first derivative of the solution of an auxiliary equation. We have 
applied this method successfully to the stepwise numerical integration of the partial- 
wave Schrodinger equation in scattering theory. Since higher-order terms in a power- 
series solution can be included rather straightforwardly, the new method achieves 
high accuracy even when the step size is appreciably large. A numerical example is 
presented. 

I. INTRODUCTION 

It is the purpose of this paper to discuss a new version of the method of variation 
of parameters, with particular reference to numerical integration of the partial- 
wave Schrijdinger equation in scattering theory. The key point of the new method 
is the form of a solution given by Eq. (10); we assume a linear combination of a 
solution of an auxiliary differential equation and its derivative, and subsequently 
solve for undetermined coefficients with the use of a power-series expansion around 
a given point. Those coefficients turn out to be slowly varying in a close neighbor- 
hood of the given point, a remakable result precisely stated in Lemma I, Eq. (17) 
and Lemma II, Eq. (22). Our proof of that result is elementary; it uses in effect 
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only the existence and uniqueness theorem of solution of a differential equation 
in regular domain [1] [see statements that follow Eq. (12)]. 

Our new method is indeed applicable to a wide class of differential equations, 
but for the purpose of orientation we shall limit ourselves to its application to the 
partial-wave Schrodinger equation in atomic scattering theory. 

For most collisions between atoms and ions at thermal energies, the potential is 
strong, supporting a substantial number of bound states, and it is of long range. 
Moreover, the de Broglie wavelength associated with the relative motion is short 
as compared to the range of the interatomic potential. Thus, the phase shift will 
take fairly large values in a wide range of angular momentum, and the need of 
selecting a suitable method of numerical integration is rather urgent. Actually it 
is in the course of our recent study on ion-atom collisions [2] that we have developed 
the new method described below. 

The Runge-Kutta method has been adapted to atomic-scattering calculations 
by Bernstein [3]. The semiclassical or JWKB method is also widely adopted [4]. 
Also we must recall here such methods as Swan’s multiple-step potential approxi- 
mation [5, 61 and the method of variable phase [7, 81. Recently, Gordon [9, lo] 
has discussed extensively the method of piecewise analytic solution. We have 
compared the multiple-step potential approximation, Calogero’s method, and 
our own, in the above-mentioned study of ion-atom scattering [2]. We also have 
made some test calculations to compare the Runge-Kutta method with ours. The 
results of these investigations will be presented below. 

2. GENERAL FORMULATION 

Consider a solution #E of the differential equation 

d2t+&/dr2 + (E - U - V)& = 0 (1) 

in a domain D of I where both U and V are analytic functions of r, E being a 
given parameter. Suppose that the solution #E specifically satisfies an initial 
condition that 

#E = a0 and d$,ldr = a1 at r = r,ED, (2) 

where a, and a, are given constants. The existence of the unique z,IJ~ for arbitrary 
a, and a, is guaranteed by the well-known Lipschitz condition, so long as the 
differential equation is regular at r = r. [I]. 

Suppose further that one knows the solution cjA of an auxiliary equation 

d2qbAldr2 + (A - U)C#J~ = 0 (3) 
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for arbitrary values of parameter h under the same initial condition that 

and d4,ldr = a, at r = r,ED. (4) 

It will be shown how efficiently one can use the knowledge of 4,+ for the deter- 
mination of zjE. 

In the scattering problem, which will be discussed in Section 4, U may represent 
the centrifugal potential [Eq. (41)] so that r$A is a free partial wave given by the 
Riccati-Bessel function. Then, $J~ is the partial wave with energy E in a given 
central potential V. We defer further physical interpretation until Section 4 so that 
we may concentrate below on the mathematics. Note that the coefficients and the 
variables appearing in Eqs. (1) and (3) may be complex in general. 

For brevity and transparency of presentation, one will hereafter use x = r - r,, 
as the independent variable and denote by a prime the differentiation with respect 
to x. Also, one denotes by $E(x) the value of tJE at point x. Thus, #E(O) means the 
value of *E at x = 0, i.e., r = r. . This stipulation applies to all functions in this 
section. 

One may rewrite Eqs. (1) and (2) as 

q&x> + [e - U(x) - 431 &Cx, = 0 
and 

$J~(O) = a,, and #EI(O) = al , 

where E and u(x) are defined by 

E = E - V(O), 

and 
u(x) = V(x) - V(O), 

so that 
v(0) = 0. 

One now assumes the solution in the form 

(5) 

(6) 

(7) 

(8) 

(9) 

aJE(x) = eF@) [h(x) + G(x) AWL 

where F(x) and G(x) are unknown functions of x. In contrast, #J,(X) is the known 
solution of Eqs. (3) and (4) for h = E; in other words, 4Xx) satisfies 

KYx> + [c - U(x)1 +,w = 0, (11) 
A(O) = a0 , and 4,‘(O) = a1 . (12) 
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Although each of the functions $E(x), $,( x , and #J,‘(X) is unique, a pair of functions ) 
F(x) and G(x) that expresses the same tJE according to Eq. (10) is nonunique. One 
may choose, however, a particular pair by assuming that F(x) and G(x) be 
independent of a, and a, . We prove below that, as a consequence of the well-known 
existence theorem in a regular domain [l], this choice not only is legitimate, but 
also makes the resulting pair F(X) and G(x) unique. 

The differentiation of Eq. (10) gives 

4; = F’$E f eF(l + G’)#J: + eF(U - E)G+, , (13) 

where Eq. (11) has been used and the argument x has been suppressed. Similarly, 
the differentiation of Eq. (13), again followed by the use of Eq. (1 l), leads to 

t,b; = [F” + (F’)2] I& + eF[2F’(I + G’) + G” + (6’ - e)G] & 

+ e”[(U - c)(2F’G f 2G’ + 1) -t U’G] c#J~. (14) 

The behavior of F(X) and G(x) near x = 0 may be readily studied. Setting 
x = 0 in Eq. (10) and using Eqs. (6) and (12), one may write 

a0 = h(O) = eF(oY$&9 + W)4,‘(0)1 
= eF(0)[uo + G(O)u,]. 

Because F(0) and G(0) are, by assumption, independent of a, and a, , the above 
equation is satisfied only if F(0) = G(0) = 0. Similarly, one sets x = 0 in Eq. (13) 
and uses Eqs. (6) and (12) to obtain 

a, = F’(O)a, + eFto)[l + G’(O)] a, + eF(“)[U(0) - E]G(O)U, 

= F’(O)u, + [l + G’(O)]u, . 

This relation requires that F’(0) = G’(0) = 0, so long as F’(0) and G’(0) are 
independent of a, and a, . Finally, Eq. (14) leads to 

a&(O) = F”(0) a, + G”(0) a, + [U(O) - c] a, , (15) 

while Eqs. (5), (6), and (9) give 

t&(O) = [U(O) + v(0) - E]U, = [U(O) - E]Uo . (16) 

The compatibility of Eqs. (15) and (16) requires that F”(0) = G”(0) = 0. In 
summary, one has obtained the following result: 
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LEMMA 1. The,firnctions F(x) and G(x) as well as theirfirst and second derivatives 
vanish at x = 0: 

F(0) = F’(0) = F”(0) = G(0) = G’(0) = G”(0) = 0. (17) 

At this point it is natural to derive differential equations for F(x) and G(x). The 
substitution of Eqs. (10) and (14) into Eq. (5) eliminates #E. The result is 

[F” + (F’Y - VI e”(+, 3- Gqt’) 
+ eF[2F’(I + G’) + G”]$,’ + eF[2(U - E)(F’G + G’) + U’G]$, = 0. 

The particular pair of functions F(x) and G(x) that has been chosen earlier is 
independent of a, and a, . Therefore, the F(x) and G(x) must satisfy equations 
that do not explicitly involve de or r&‘. Thus, equating the coefficients of c$< and 
I$~’ to zero, one obtains a set of coupled equations for F(x) and G(x): 

F” + (F’)2 - v + 2(U - E)(F’G $ G’) + U’G = 0, (18) 

[F” + (F’)’ - v] G + 2F’(l + G’) $ G” = 0. (19) 

Combining these two equations, one may obtain 

G” + 2F’(l + G’) - 2(U - E)(F’G + G’) G - CJ’G2 = 0. (20) 

This equation can be integrated once to give 

G’ =e-2F- 1 +(U-•)G2. (21) 

Any two of the three Eqs. (18), (19), and (21) will determine F(x) and G(X). 
If one differentiates Eq. (20) at x = 0 and uses Lemma I, one readily obtains 

Lemma II. 

LEMMA II. The third derivative of G(x) vanishes at .Y = 0: 

G”(O) = 0. (22) 

A few remarks on the two lemmas are in order. First, notice that the dictation 
of the same initial conditions for #E and c$< [Eqs. (6) and (12)] is crucial. The 
legitimacy of that dictation is ensured by the regularity of the differential equations 
(5) and (11). Second, Eq. (9) is essential to the proof for the vanishing of F”(O), 
G”(O), and G”‘(O). Finally, the lemmas indicate that F(X) and G(x) are nearly equal 
to zero in a sufficiently close neighborhood of x = 0. 
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3. POWER-SERIES SOLUTION FOR F AND G 

Since several lowest-order terms are missing from the Taylor series expansion 
around x = 0 of the functions F and G, we may expect that such series solutions 
are numerically efficient. We may use those series solutions to integrate numerically 
the differential equation (5) from x = 0 to another point, say, x = h along with 
the formulas (10) and (13). If accurate values of 4,(h) and its derivative 4,‘(h) are 
available, the proposed method is expected to be accurate for a sufficiently small 
value of h. If sufficiently large number of terms are included in the series, one may 
also try an appreciably large step size as long as it is within the convergence radii 
of the series for F and G. 

One thus tries power-series solutions 

F(x) = f fnxn, 
n=3 

G(x) = 2 gnxn, 
a=4 

(23) 

(24) 

as prescribed by Lemmas I and II. Suppose the coefficients of the expansions, 

U(x) - E = f u,xn 
?Z=O 

and 

c(x) = f v,xTL, (26) 
9l=l 

are known. Then, substitution of Eqs. (23)-(26) into Eqs. (18) and (21) gives, 
after somewhat lengthy but straightforward calculations, the following result. 

f, = 46, (27) 

f4 = %/12, (28) 

f, = Q/20 $- U&/30, (29) 

fG = v,/30 - u,2/120 + z&40 + U,U,/90, (30) 

f, = v,/42 - v,v,/126 + u,v,/210 + 24,%,/315 
+ llu,v,/1260 + 5u,u,/252, (31) 

fs = ~156 - vZ2/504 - v,v,/224 + u,v,/420 
+ 13u,v,/3360 + u,v,/140 + llu,v,/672 - 41~,v,~/10080 
+ 11 u,u,u,/2520 + uo2v2/ 1260, (32) 
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g, = - v,/Q, (33) 

g, = - C,/30 (34) 
g, = - v,/60 - u,v,/90, (35) 
g; = - ~,/I05 + 13~,~/1260 - u,u,/140 - ~/~v~/315, (36) 

g, = - vJ168 - u,z~,/840 - ~,~v,/1260 - 1 lu,v,/5040 
- 5u,v,/1008 + v,v,/112. (37) 

The next coefficients fg and g, can be expressed most conveniently in terms of 
low-order coefficients as 

f, = 11,172 -.fm -- xfx49 - 2~og,19 - dd2 - uo.f,g4i9, (38) 

g, = (--2h + 2h2 + ?f3h + w42w. (39) 

It may be added that the derivation of Eqs. (33)-(37) and (39) is facilitated by 
the relation 

G(x) = ,I [--2F(x-‘) + 2P(x’)] dx’ -+ u,g,?P/9 j O(xlO), 

which follows from Eq. (21) and the lemmas. 

4. APPLICATION TO THE POTENTIAL-SCATTERING PROBLEM 

The Schrijdinger equation for the I-th partial wave #E of energy E in a central 
potential V is 

d2&/dr2 f- [E - 1(1 + l)+ - VI+, = 0, (40) 

where all the quantities are measured in a system of units in which @/(2m) = 1, 
m being the particle mass. As a natural choice, one may let the function U of 
Section 2 be the centrifugal potential 

u = .?(I + l)?. (41) 

Therefore, C$~ is a linear combination of the Riccati-Bessel functions (defined in 
Appendix I of [7]): 

$bE = C&(KY) -t- @,(Kr), (42) 

where 
K = $1’. (43) 
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and the coefficients a: and /3 are determined by means of Eq. (4). The coefficients 
of the expansion (25) are readily given by 

and 

u,=z(l+l)r,2-E (44) 

2.4, = I(1 + l)(- l)n(n + 1) rgzdn (for N 3 1). (45) 

Provided that the expansion coefficients for z! [Eq. (26)] have been worked out, 
the results [Eqs. (27)-(39)] of Section 3 may readily apply to the numerical evalua- 
tion of the function #E in a sufficiently close neighborhood of rO. [Because the 
formalism of Section 2 fails at r0 = 0, where U of Eq. (41) is singular unless 
1 = 0, its application should start at a finite r 0 ; the solution I,!J, up to that point 
may be presumed as obtainable by another method, e.g., the straightforward 
power-series expansion.] 

It is appropriate to consider the physical meaning of the form [Eq. (lo)] of the 
solution. The parameter E, defined by Eq. (7) includes in effect the potential V 
averaged around the point r = r. . In other words, the function CJ$ [Eq. (42)] 
takes into account an average effect of the potential V through the local wave 
number K [Eq. (43)]. Additional effects due to the spatial variation of V are in- 
corporated into the present formalism in terms of the functions F and G, both of 
which are slowly varying locally. One can evaluate these functions by Eqs. (27)-(39) 
and hence $E up to a point r. The function G represents in effect the “local” phase 
shift that results from the spatial variation of the potential V in a small interval 
near r = r. , while the function F describes a slow modulation of the amplitude 
of JIE in that interval. In this sense, the present formalism may be regarded as a 
modification of the method of variable phase [7]. 

When the potential contains a repulsive part, the E of Eq. (7) may become 
negative in certain intervals of r. The general theory of Section 2 and 3 still applies 
formally in such a case. The only necessary modification then is to recognize the 
K of Eq. (43) as pure imaginary and thus to use the modified Riccati-Bessel 
functios in Eq. (42). 

Parenthetically it may be added that the division of the “effective potential” 
U + V into U and V is arbitrary from the mathematical point of view, and that, 
depending upon alternative divisions, alternative applications of the general 
theory are possible. For instance, one may consider V as the centrifugal potential 
and U as a given potential for which the s-wave solution is readily obtained. An 
example of such a U may be of the form -g exp(-cr), where g and c are positive 
constants; the s-wave solution in this case may be expressed analytically [ll]. In 
that application, the I-th partial wave $E for energy E is related to the s wave +E 
for a modified E through Eq. (10). The expansion formulas (27)-(39) again deter- 
mine F and G, at least locally, and their repeated applications over a number 
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of intervals will give F and G over the entire interval of r. In fact, this procedure 
may be regarded as an extension of Takayanagi’s method of modified wave 
numbers [12]. Takayanagi points out that, when V is of sufficiently short range 
and I is not very large, it is reasonable to use the approximation & w I$~, and 
he applied it with considerable success to a great many calculations of distorted 
waves for molecular collisions. Considered from Takayanagi’s point of view, the 
F and G of the general theory represent corrections to the modified-wave-number 
approximation. 

5. A NUMERICAL EXAMPLE 

To test the usefulness of our method, we have applied it to a simple example 
that permits exact analytical solution. 

Consider the scattering of the s wave (for which U = 0) at E = 0 by an attractive 
exponential potential 

V = -ge+, (46) 

where g is a positive constant, Then Eq. (40) becomes 

d2#ldr2 + ge-‘$ = 0 (47) 

with the boundary condition that 

t,h=O at r=O. (48) 

More specifically, one may choose the potential strength g such that there is a 
zero-energy resonance solution $. Then # satisfies the condition that 

d#/dr -+O as r+ co. (49) 

As shown in [ll], the solution that satisfies Eqs. (47)-(49) may be written, apart 
from an arbitrary normalization factor, as 

+ = Jo(2g1/2e-7/2), 

where J,, is the Bessel function of the first kind and of the zero order, and g is 
related to any zero j,,, of Jo by 

2g1f2 = j,, (s = 1, 2, 3 ,... ). (51) 

58x/1 113-8 



418 TAN1 AND INOKUTI 

The application of our method to the particular problem in the neighborhood 
of any point r = r. proceeds as follows. The 4E of our general theory satisfies 

d2$,/dx2 + E$. = 0, (52) 

where x = r - r. and 
E = ge+o . (53) 

The solution satisfying Eq. (5) is then 

g$ = a, cos KX i (q/u) sin KX, (54) 

where K = e1j2. The ZI of Eq. (8) is now given by 

z’ = ge-?‘o - ge-’ (55) 

so that 

L’n = ( - l)+l geP//r !. (56) 

Further, the U, of Eq. (25) are given by 

u. = --E = -gee'0 (57) 

and 
u, = 0 (for n 3 1). (58) 

Then, Eqs. (27)-(39) determine the F and G and thence $ for sufficiently small 
intervals. 

We wrote computer programs that integrate Eq. (47) both by our method and 
by the fourth-order Runge-Kutta method [13] and subsequently compare those 
results with the exact solution, Eq. (50). To demonstrate the performance of our 
method, we present some of the numerical results in Fig. 1. As a measure of the 
accuracy of an approximate solution i+V@, we define the root-mean-square error 

d = [N-l Fl [+a)(rJ - #(~)(rj)]2’;1’2, 

where z,P) is the exact solution given by Eq. (50) and rj are the points at which 
I/P) and Q/J(~) are evaluated. For simplicity, we chose in all the programs equally 
spaced rj in the interval 0 < r < 6; in other words, rj = j/r (j = I, 2,..., N) and 
Nh = 6. The computation used 36-bits floating-point arithmetic (on a CDC-3600 
computer), the precision of which corresponds to about 11 decimal digits. 

We call the program that is based on our method the eighth-order program 
when it includes the ninth-order terms in the power series for F and G and thus 
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-3 -2 -I -3 

lw,,h 
-2 -I 

FIG. 1. The root-mean-square error A of an approximate solution as a function of the step 
size h. The precise definition of A is given by Eq. (59). The circles show data points which, for 
convenience, are connected by straight-line segments. The full lines represent the results of our 
eighth-order program, the dash-dot lines those of our sixth-order program, and the broken lines 
those of the fourth-order Runge-Kutta method. Case (a) corresponds to the zero-energy-re- 
sonance wavefunction with three nodes (2g112 = jo,a = 11.79...), and case (b) to the zero-energy- 
resonance wavefunction with nine nodes (2g1j2 = jO,tO = 30.63...). 

uses all coefficients listed in Eqs. (27)-(39). Note that the accuracy of the wave- 
function derivative $E’ is of the eighth order, because on the right-hand side of 
Eq. (13) the derivative of F to be multiplied by #E is of the eighth order. A program 
of smaller order will be defined similarly using a number which is less by one than 
the highest order that is included in the series for F and G. In Fig. 1, the results 
produced by our eighth-order program is shown by a full line; the results produced 
by the sixth-order program [using Eqs. (27)-(31) and (33)-(36)] are shown by a 
dot-dash curve; the results produced by the fourth-order Runge-Kutta method are 
shown by a dashed curve. Two different values of g have been chosen; in case 
(a) there are three nodes of #, i.e., s = 4 in Eq. (51), whereas in case (b) there 
are nine nodes, i.e., s = 10 in Eq. (51). As the step size is made smaller, the d 
decreases steadily until it levels off at some 12. The leveling off results from the 
accumulation of round-off errors in the arithmetic. The d for our eighth-order 
method right before the leveling-off sets in is substantially smaller than that for 
the fourth-order Runge-Kutta method at the same h. The optimal step size that 
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gives the smallest d is considerably larger for our eighth-order method than for 
the fourth-order Runge-Kutta method. Further, the minimum value of d is 
somewhat smaller for our method. We have also run the seventh-, fifth-, and 
fourth-order programs. The results produced by the seventh-order program are 
virtually identical with the eighth-order results, except that the latter is slightly 
better near the minimum d. The curves for the fifth-order results lie just midway 
between the dot-dash curve and the dashed curve, but they are omitted from Fig. 1. 
Our fourth-order program is comparable with the fourth-order Runge-Kutta 
method. More specifically, our fourth-order program is slightly inferior in 
case (a) (s = 4, in Eq. (51)) while it is slightly superior in case (b) (s = 10, in 
Eq. (51)). We have also run another version of the Runge-Kutta method using 
the algorithm given in [14]. The d produced by this program is slightly better 
than the dashed curve of Fig. 1 (by a factor of 1.5 - 2.0), except near the minimum 
of d in case (b). Since the difference is inappreciable, we have omitted this result 
from Fig. 1 for simplicity. 

In summary, it is straightforward to include higher order terms in the power- 
series solutions for F and G using the results of Section 3. The curves in Fig. 1 
demonstrate how the inclusion of a higher order term improves the accuracy for 
a fixed value of step size h. We have not tried the Runge-Kutta method of the 
sixth-order because of the complexity of the formula [15]. We have also examined 
the error of the first derivative d#@)/dr simultaneously in all runs discussed above. 
The overall behavior of that error is slightly larger than the d discussed above, 
but the deviation remains always within the factor of 2.5. Thus, we conclude that 
no significantly new information is obtained from the study of the derivative 
d@@/dr. 

6. CONCLUDING REMARKS 

The results of Section 5 clearly show that our method is suitable for numerical 
integration with appreciably large step sizes. Also, our method permits an arbitrary 
change of the step size from one interval to another, and therefore it is possible to 
adjust the step size in different regions according to the steepness of the potential, 
so that maximum efficiency may be achieved. In these respects, our method is 
similar to Gordon’s method of piecewise analytic solution [9]. It is interesting to 
compare Gordon’s method with ours and some work in this direction is underway. 

In the course of a study on ion-atom scattering [2], we have also tried the 
multiple-step approximation [5, 61 and Calogero’s method of variable phase [7]. 
As discussed in detail by Swan [5], the result derived from a multiple-step potential 
converges to the exact result from an originally smooth potential, in the limit of 
vanishing steps. Because of the simplicity of programming and of the speed of 
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calculation, the multiple-step approximation is especially convenient for a quali- 
tative analysis-for instance, when one tries to analyze the characteristic differences 
between different potential shapes (such as those between a long-range potential 
and a short-range one). The multiple-step approximation, however, tends to 
enhance spuriously the scattering amplitude because a discontinuity in a potential 
in general is most efficient in producing a scattered wave [16]. Consequently, it 
fails to guarantee high accuracy of the result unless the step size is made extremely 
small. In fact, we devised our method in order to overcome those shortcomings. 

The variable-phase method is theoretically attractive. When one follows the 
variation of the phase function from the origin to the asymptotic region, the 
phase shift, including integral multiples of 7~, is uniquely determined, whereas 
the asymptotic form of the wavefunction alone leaves an ambiguity in the phase 
shift by an integral multiple of 7r. Theoretically it is important to remove that 
ambiguity, as seen in Levinson’s theorem on the number of bound states and the 
zero-energy phase shift. Further, the method of variable phase is powerful for 
analytical proofs of many other theorems 171. Unfortunately, the method often 
requires integration with small steps and turns out time consuming. This is true 
even when one uses the version of the tangent-cotangent function that has been 
designed for speedier integration. 

Turning back to our method, we may make a few additional remarks. When 
one uses the method with the choice of U given by Eq. (41), the “locally available” 
kinetic energy E of Eq. (7) is independent of I. If the potential V is of short range 
(i.e., decreasing faster than r-2 at large Y), one often encounters barrier penetration 
at low E and large I. In applying our method, a single algorithm is sulhcient, 
regardless of the presence or absence of barrier penetration. That is clearly not 
the case with Swan’s or any other similar method if the whole effective potential 
U + V is replaced by a series of step functions. Actually, we have carefully exam- 
ined the possibility of enhanced errors due to barrier penetration in ion-atom 
scattering [2]. However, no significant difference was found in the results produced 
by a program that treated barrier penetration separately. 

In conclusion, our method enables one to integrate the partial-wave Schrijdinger 
equation accurately. With an optimal choice of the step size, the required machine 
time can be made reasonably short. Although the paper has dealt exclusively 
with potential scattering, a generalization to coupled equations should be feasible 
upon replacing quantities U, V, F, and G with corresponding matrices. 
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